9 research outputs found

    Microbial processes and bacterial populations associated to anaerobic treatment of sulfate-rich wastewater

    Get PDF
    A pilot-scale (1.2 m3) anaerobic sequencing batch biofilm reactor (ASBBR) containing mineral coal for biomass attachment was fed with sulfate-rich wastewater at increasing sulfate concentrations. Ethanol was used as the main organic source. Tested COD/sulfate ratios were of 1.8 and 1.5 for sulfate loading rates of 0.65–1.90 kgSO42−/cycle (48 h-cycle) or of 1.0 in the trial with 3.0 gSO42− l−1. Sulfate removal efficiencies observed in all trials were as high as 99%. Molecular inventories indicated a shift on the microbial composition and a decrease on species diversity with the increase of sulfate concentration. Beta-proteobacteria species affiliated with Aminomonas spp. and Thermanaerovibrio spp. predominated at 1.0 gSO42− l−1. At higher sulfate concentrations the predominant bacterial group was Delta-proteobacteria mainly Desulfovibrio spp. and Desulfomicrobium spp. at 2.0 gSO42− l−1, whereas Desulfurella spp. and Coprothermobacter spp. predominated at 3.0 gSO42− l−1. These organisms have been commonly associated with sulfate reduction producing acetate, sulfide and sulfur. Methanogenic archaea (Methanosaeta spp.) was found at 1.0 and 2.0 gSO42− l−1. Additionally, a simplified mathematical model was used to infer on metabolic pathways of the biomass involved in sulfate reduction

    Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilims

    Get PDF
    Anaerobic granulation describes the self-immobilisation of methanogenic consortia into dense, particulate biofilms. This procedure underpins the operation of several categories of high-rate anaerobic wastewater treatment system. Full-scale anaerobic granular sludge plants have been generally operated in the mesophilic (20–45 °C) or thermophilic (45–65 °C) temperature range. On the other hand, recent studies highlighted the economic advantages of treating wastewaters at their discharge temperatures (mostly under 18 °C), removing a costly heating process and increasing net biogas yield. However, as yet, relatively little information is available about the microbial behaviour and interactions in anaerobic granular sludge formed under psychrophilic conditions. To this end, and in order to provide a microbial insight into low-temperature anaerobic granulation, we monitored the changes in methanogenic community structure, associated with the changes in process performance. Three, laboratory-scale, expanded granular sludge bed (EGSB) bioreactors treating a synthetic glucose wastewater were tested at two temperatures of 37 ± 1 °C (R1) and 15 ± 1 °C (R2 and 3). Quantitative real-time PCR and specific methanogenic activity assays highlighted a community shift towards hydrogenotrophic methanogens, particularly the order Methanomicrobiales in the low-temperature bioreactors. Corresponding to this, denaturing gradient gel electrophoresis (DGGE) analysis identified the emergence and maintenance of a Methanocorpusculum-like organism. Our results indicate that hydrogenotrophic methanogens, particularly the Methanomicrobiales-related populations, are likely to play important roles in low-temperature anaerobic granular sludge systems. This suggests that the process efficiency could be improved by facilitating the growth and retention of this group

    Bioremediation of gasoline-contaminated groundwater in a pilot-scale packed-bed anaerobic reactor

    No full text
    This work reports on the anaerobic treatment of gasoline-contaminated groundwater in a pilot-scale horizontal-flow anaerobic immobilized biomass reactor inoculated with a methanogenic consortium. BTEX removal rates varied from 59 to 80%, with a COD removal efficiency of 95% during the 70 days of in situ trial. BTEX removal was presumably carried out by microbial syntrophic interactions, and at the observed concentrations, the interactions among the aromatic compounds may have enhanced overall biodegradation rates by allowing microbial growth instead of co-inhibiting biodegradation. There is enough evidence to support the conclusion that the pilot-scale reactor responded similarly to the lab-scale experiments previously reported for this design. (C) 2009 Elsevier Ltd. All rights reserved.FAPESPCNP

    Characterization of Environmentally Persistent Escherichia coli Isolates Leached from an Irish Soil▿

    No full text
    Soils are typically considered to be suboptimal environments for enteric organisms, but there is increasing evidence that Escherichia coli populations can become resident in soil under favorable conditions. Previous work reported the growth of autochthonous E. coli in a maritime temperate Luvic Stagnosol soil, and this study aimed to characterize, by molecular and physiological means, the genetic diversity and physiology of environmentally persistent E. coli isolates leached from the soil. Molecular analysis (16S rRNA sequencing, enterobacterial repetitive intergenic consensus PCR, pulsed-field gel electrophoresis, and a multiplex PCR method) established the genetic diversity of the isolates (n = 7), while physiological methods determined the metabolic capability and environmental fitness of the isolates, relative to those of laboratory strains, under the conditions tested. Genotypic analysis indicated that the leached isolates do not form a single genetic grouping but that multiple genotypic groups are capable of surviving and proliferating in this environment. In physiological studies, environmental isolates grew well across a broad range of temperatures and media, in comparison with the growth of laboratory strains. These findings suggest that certain E. coli strains may have the ability to colonize and adapt to soil conditions. The resulting lack of fecal specificity has implications for the use of E. coli as an indicator of fecal pollution in the environment

    Effect of sulfate on low-temperature anaerobic digestion

    Get PDF
    The effect of sulfate addition on the stability of, and microbial community behavior in, low-temperature anaerobic expanded granular sludge bed-based bioreactors was investigated at 15 degrees C. Efficient bioreactor performance was observed, with chemical oxygen demand (COD) removal efficiencies of >90%, and a mean SO42- removal rate of 98.3%. In situ methanogensis appeared unaffected at a COD: SO42- influent ratio of 8:1, and subsequently of 3:1, and was impacted marginally only when the COD: SO42- ratio was 1:2. Specific methanogenic activity assays indicated a complex set of interactions between sulfate-reducing bacteria (SRB), methanogens and homoacetogenic bacteria. SO42- addition resulted in predominantly acetoclastic, rather than hydrogenotrophic, methanogenesis until >600 days of SO42--influenced bioreactor operation. Temporal microbial community development was monitored by denaturation gradient gel electrophoresis (DGGE) of 16S rRNA genes. Fluorescence in situ hybridizations (FISH), qPCR and microsensor analysis were combined to investigate the distribution of microbial groups, and particularly SRB and methanogens, along the structure of granular biofilms. qPCR data indicated that sulfidogenic genes were present in methanogenic and sulfidogenic biofilms, indicating the potential for sulfate reduction even in bioreactors not exposed to SO42-. Although the architecture of methanogenic and sulfidogenic granules was similar, indicating the presence of SRB even in methanogenic systems, FISH with rRNA targets found that the SRB were more abundant in the sulfidogenic biofilms. Methanosaeta species were the predominant, keystone members of the archaeal community, with the complete absence of the Methanosarcina species in the experimental bioreactor by trial conclusion. Microsensor data suggested the ordered distribution of sulfate reduction and sulfide accumulation, even in methanogenic granules.Pádhraig Madden was supported by a scholarship from the Irish Research Council. Gavin Collins is supported by a European Research Council (ERC) Starting Grant (‘3C-BIOTECH’; project no. 261330). Profs. Michael Böttcher and Tim Ferdelman, and Dr. Raeid Abed, are thanked for their insightful conversations

    Psychrophilic methanogenic community development during long-term cultivation of anaerobic granular biofilms

    No full text
    Granular biomass was temporally sampled from a cold (4-15 degrees C) anaerobic bioreactor, which was inoculated with mesophilic biomass and used to treat industrial wastewater in a long-term (3.4 year) study. Data from 16S rRNA gene clone libraries, quantitative PCR and terminal restriction fragment length polymorphism analyses indicated that microbial community structure was dynamic, with shifts in the archaeal and bacterial communities\u27 structures observed following start-up and during temperature decreases from 15 to 9.5 degrees C (phase 1). Specifically, the relative abundance of architecturally important Methanosaeta-like (acetoclastic) methanogens decreased, which was concomitant with granule disintegration and the development of a putatively psychrophilic hydrogenotrophic methanogenic community. Genetic fingerprinting suggested the development of a psychroactive methanogenic community between 4 and 10 degrees C (phase 2), which was dominated by acetogenic bacteria and Methanocorpusculum-like (hydrogenotrophic) methanogens. High levels of Methanosaeta-like acetoclastic methanogens and granular biofilm integrity were maintained during phase 2. Overall, decreasing temperature resulted in distinctly altered microbial community structure during phase 1, and the development of a less dynamic psychroactive methanogenic consortium during phase 2. Moreover, psychrophilic H(2)-oxidizing methanogens emerged as important members of the psychroactive consortia after 41200 days of low-temperature cultivation. The data suggest that prolonged psychrophilic cultivation of mesophilic biomass can establish a well-functioning psychroactive methanogenic consortium, thus highlighting the potential of low-temperature anaerobic digestion technology. The ISME Journal (2009) 3, 1231-1242; doi: 10.1038/ismej.2009.67; published online 25 June 200

    Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR) treating cane vinasse at 55ºC

    Get PDF
    The aim of this work was to investigate the anaerobic biomass formation capable of treating vinasse from the production of sugar cane alcohol, which was evolved within an anaerobic sequencing batch biofilm reactor (ASBBR) as immobilized biomass on cubes of polyurethane foam at the temperature of 55ºC. The reactor was inoculated with mesophilic granular sludge originally treating poultry slaughterhouse wastewater. The evolution of the biofilm in the polyurethane foam matrices was assessed during seven experimental phases which were thus characterized by the changes in the organic matter concentrations as COD (1.0 to 20.0 g/L). Biomass characterization proceeded with the examination of sludge samples under optical and scanning electron microscopy. The reactor showed high microbial morphological diversity along the trial. The predominance of Methanosaeta-like cells was observed up to the organic load of 2.5 gCOD/L.d. On the other hand, Methanosarcinalike microorganisms were the predominant archaeal population within the foam matrices at high organic loading ratios above 3.3 gCOD/L.d. This was suggested to be associated to a higher specific rate of acetate consumption by the later organisms.<br>Este trabalho investigou a formação de um biofilme anaeróbio capaz de tratar vinhaça da produção de álcool de cana-de-açúcar, que evoluiu dentro de um reator operado em bateladas seqüenciais com biofilme (ASBBR) tendo a biomassa imobilizada em cubos de espuma de poliuretano na temperatura de 55ºC. O reator foi inoculado com lodo granular mesofílico tratando água residuária de abatedouro de aves. A evolução do biofilme nas matrizes de espuma de poliuretano foi observada durante sete fases experimentais que foram caracterizadas por mudanças nas concentrações de matéria orgânica como DQO (1,0 a 20,0 g/L). A caracterização da biomassa foi feita por exames de amostras do lodo em microscopia ótica e eletrônica de varredura. O reator apresentou grande diversidade de morfologias ao longo do experimento. A predominância de células como Methanosaeta foram observadas até a carga orgânica de 2,5 gDQO/L.d. Por outro lado, microrganismos como Methanosarcina foram a população arquéia predominante nas matrizes de espuma em taxas de carregamento orgânico acima de 3,3 gDQO/L.d. Este fato pode estar relacionado com maior taxa de utilização específica de acetato por esses microrganismos

    Psychrophilic methanogenic community development during long-term cultivation of anaerobic granular biofilms

    No full text
    Granular biomass was temporally sampled from a cold (4–15 °C) anaerobic bioreactor, which was inoculated with mesophilic biomass and used to treat industrial wastewater in a long-term (3.4 year) study. Data from 16S rRNA gene clone libraries, quantitative PCR and terminal restriction fragment length polymorphism analyses indicated that microbial community structure was dynamic, with shifts in the archaeal and bacterial communities' structures observed following start-up and during temperature decreases from 15 to 9.5 °C (phase 1). Specifically, the relative abundance of architecturally important Methanosaeta-like (acetoclastic) methanogens decreased, which was concomitant with granule disintegration and the development of a putatively psychrophilic hydrogenotrophic methanogenic community. Genetic fingerprinting suggested the development of a psychroactive methanogenic community between 4 and 10 °C (phase 2), which was dominated by acetogenic bacteria and Methanocorpusculum-like (hydrogenotrophic) methanogens. High levels of Methanosaeta-like acetoclastic methanogens and granular biofilm integrity were maintained during phase 2. Overall, decreasing temperature resulted in distinctly altered microbial community structure during phase 1, and the development of a less dynamic psychroactive methanogenic consortium during phase 2. Moreover, psychrophilic H2-oxidizing methanogens emerged as important members of the psychroactive consortia after &#62;1200 days of low-temperature cultivation. The data suggest that prolonged psychrophilic cultivation of mesophilic biomass can establish a well-functioning psychroactive methanogenic consortium, thus highlighting the potential of low-temperature anaerobic digestion technology
    corecore